OS Self-Reflection Layer - Preliminary Design &
Analysis

Pointer: OS-AWARENESS-PHASE-003
Scope: Prepare the logical design (no code) for the Self-Reflection Phase that builds on the
completed Self-Awareness Layer.

1) Objectives

* Enable the OS to understand its own behavior, not just observe it.

« Convert Awareness events + Telemetry + Snapshot into insights (patterns, anomalies, trends).

« Establish a Self-Feedback Loop that proposes and applies policy adjustments to improve behavior/
UX/perf over time.

Key Outcomes 1. Introspection: derive signals from raw events/snapshots (e.g., window churn rate, focus
stability, render latency distribution).

2. Behavior Evaluation: measure whether recent behavior is healthy vs. target thresholds (SLO-inspired).

3. Self-Feedback: recommend/commit adjustments (e.g., throttling window spawns, deferring animations,
prefetch strategies) under feature flags.

2) Dependencies (from Awareness Layer)

* Awareness Events (e.g., DESKTOP_LOADED, WINDOW_OPENED, WINDOW_FOCUSED,
WINDOW_CLOSED, TELEMETRY_METRIC).

* Snapshot | (openWindowlds, activeWindowlId, windowCount).

* Event Bus (publish/subscribe) & Telemetry stream.

* Feature Flags: AWARENESS_ENABLED , TELEMETRY_ENABLED .

3) High-Level Architecture

Awareness Layer |
Events + Snapshot + Telemetry > |

v

| Self-Reflection Layer (this) |

1) Introspection Engine
- feature extraction, window metrics, focus stability, latency

2) Behavior Evaluator
- compare vs. targets/SLOs, detect drifts/anomalies

3) Feedback Loop
- propose - validate - (optionally) apply policy adjustments

4) Reflection Memory
- rolling store of summaries, decisions, and outcomes

5) Policy/Strategy Manager
- versioned strategies, gating via feature flags

| A
| | outcomes & counters
v |

|

| Application / UI Policies |
| (windowing rules, perf budgets, prefetch heuristics, logging) |
[

4) Data Model (logical)

4.1 Event Envelope

AwarenessEvent {

type: 'DESKTOP_LOADED' | 'WINDOW_OPENED' | 'WINDOW_FOCUSED' | 'WINDOW_CLOSED'
| "TELEMETRY_METRIC';
ts: number; // high-res timestamp

payload: Record<string, any>;

4.2 Reflection Signals (derived)

IntrospectionSignal {

ts: number;

kind: 'WINDOW_CHURN' | 'FOCUS_STABILITY' | 'LATENCY_SUMMARY' | 'IDLE_RATIO' |
'"WINDOW_LIFETIME";

value: number | Record<string, number>;

windowId?: string;

}

4.3 Evaluation Result

EvaluationResult {
ts: number;

signal: string; // reference to IntrospectionSignal.kind
status: 'OK' | 'WARN' | 'CRIT';

score: number; // normalized 0..1 (1=excellent)
details?: Record<string, any>;

4.4 Feedback Decision

FeedbackDecision {
ts: number;

cause: EvaluationResult[]; // subset that triggered decision

action: 'ADJUST_PREFETCH' | 'THROTTLE_WINDOWS' | 'DEFER_ANIM' |
"TUNE_FOCUS_TIMEOUT" | 'NOOP';

params?: Record<string, any>;

mode: 'PROPOSED' | 'DRY_RUN' | 'APPLIED';

4.5 Reflection Memory - Ring-buffer / sliding window (e.g., last N minutes or M entries) for:
signals[] , evaluations[] | decisions[] , plus versioned policy snapshots.

5) Core Components & Responsibilities

5.1 Introspection Engine

* Purpose: Convert raw events/telemetry into normalized signals.

* Techniques: rolling aggregates, EWMA, histograms, quantiles (p50/p95), streak counters.
« Examples:

* Window Churn: open/close per minute; high churn — cognitive load.

* Focus Stability: mean time between focus changes; low means distraction.

* Latency Summary: p95 of desktop_render_ms ; breaching budget — perf issue.

« Idle Ratio: fraction of time without focus or interactions.

5.2 Behavior Evaluator

« Compare signals vs targets (SLO-like):

*| WINDOW_CHURN <= 6/min , FOCUS_STABILITY >= 12s | LATENCY_P95 <= 2500ms |
IDLE_RATIO <= 0.35.

* Classification: | OK/WARN/CRIT with a normalized score.

+ Anomaly detection (optional): z-score or robust MAD over rolling windows.

5.3 Feedback Loop
* Pipeline: propose — validate — apply.
+ Constraints: feature flags, cooldowns, safety checks, and revert plan.
* Actions (examples):
* THROTTLE_WINDOWS: limit concurrent window spawns if churn is CRIT.
« DEFER_ANIM: switch to reduced-motion when latency CRIT for 3 cycles.
* ADJUST_PREFETCH: lower prefetch concurrency under load.
* TUNE_FOCUS_TIMEOUT: increase focus stickiness to reduce thrash.

5.4 Reflection Memory

« Stores: signals, evaluations, decisions, policy deltas, outcomes.
« Exposes: | query(range) , summaries() , export() for debugging.

5.5 Policy/Strategy Manager

* Versioned strategies with criteria — action mappings.
« Supports DRY_RUN mode for safe experimentation.

6) Data Flows
6.1 Event — Signal
AwarenessEvent —» Introspection Engine —» IntrospectionSignall]
- Transformations: filtering, bucketing, rolling stats.
6.2 Signal — Evaluation
IntrospectionSignal —» Behavior Evaluator —» EvaluationResult
- Rules + thresholds + anomaly checks.

6.3 Evaluation — Decision

EvaluationResult(+context) —» Feedback Loop —» FeedbackDecision

- State-aware; respects cooldowns & feature flags.

6.4 Decision — Policy

FeedbackDecision —(if APPLIED)—» Policy/Strategy Manager —» App/UI

- Emits PolicyChange event for observability & rollback metadata.

7) Interfaces (proposed, non-binding)

// Entrypoint
export interface SelfReflection {
start(): void; // attach to bus, begin cycles
stop(): void; // detach & flush
snapshot(): ReflectionSnapshot; // signals/evals/decisions recent view

}

export interface Introspection {
ingest(e: AwarenessEvent): void;
compute(now: number): IntrospectionSignall];

export interface Evaluator {
assess(signals: IntrospectionSignal[], now: number): EvaluationResult[];

export interface Feedback {
decide(evals: EvaluationResult[], now: number): FeedbackDecision[];
apply(decisions: FeedbackDecision[], mode: 'DRY_RUN' | "APPLY'): void;
}

export interface PolicyManager {
current(): PolicySnapshot;
apply(decision: FeedbackDecision): PolicySnapshot; // version++
revert(version: number): PolicySnapshot;

8) Algorithms (sketches)

8.1 Rolling Quantiles (p95) - Maintain fixed-size buffer of last N metrics per name.
- Approximation acceptable (Greenwald-Khanna or t-digest in future).
- For v1: sort small buffer (N<256) — quick p95.

8.2 EWMA for Stability - ewma = a * x + (1-a) * ewma_prev (a~0.25).
- Use for focus change intervals to smooth noise.

8.3 Anomaly viaRobustZ- z = (x - median) / (1.4826 * MAD) — flagif |z|>3 over K windows.

8.4 Cooldown Control - Per action, maintain lastAppliedAt ; block if now - lastAppliedAt <
COOLDOWN_MS | (e.g., 30s).

9) Config & Feature Flags

* REFLECTION_ENABLED (master gate).

« REFLECTION_DRY_RUN | (no-op apply, only log).

* REFLECTION_WINDOW_SECS |(aggregation window, default 60s).
* REFLECTION_TARGETS |(JSON thresholds).

* REFLECTION_ACTIONS | (allowlist of actions that may apply).

10) Observability

* Emit| REFLECTION_SIGNAL |, REFLECTION_EVAL |, REFLECTION_DECISION , POLICY_CHANGED .
« Counters & histograms exposed via Telemetry exporter.
* Add a Debug Panel (later) to visualize signals/evals/decisions over time.

11) Testing Strategy

* Unit: each transformer (events—signals), evaluator rules, cooldown logic.

+ Integration: synthetic journeys that trigger each decision type.

* Property-based (optional): random event streams to test invariants (e.g., no decision without cause).
+ Determinism: seed time & inputs; provide reset() | utilities similar to Awareness layer.

Coverage Targets
- Statements = 60%, Branches = 50%, Functions = 55%, Lines = 60% (= Awareness baseline).

12) Safety & Rollback

+ All actions gated by flags + allowlist + cooldowns.
* PolicyManager.revert(version) available.
+ DRY_RUN | default for first rollout; logs include before/after snapshots.

13) Performance Budget

* Reflection cycle < 3ms per second on average (main-thread).
* Bounded memory for buffers (configurable caps).
* Coalesce events (debounce) when rate is high.

14) Security & Privacy

* No PII processed.
* Telemetry redaction for window titles or sensitive payload keys.
* Only numeric/aggregate metrics stored in Reflection Memory by default.

15) Open Questions

1. Do we need persistent storage for Reflection Memory (e.g., IndexedDB) or keep in-memory ring
buffer only?

2. Should decisions be suggestive to the user (Ul prompt) before apply?

3. How do we expose developer hooks for custom strategies (plugin-like)?

16) Rollout Plan (Phased)

1. Phase A: Introspection signals (WINDOW_CHURN, FOCUS_STABILITY, LATENCY_SUMMARY).
2. Phase B: Evaluator thresholds + DRY_RUN decisions with telemetry only.

3. Phase C: Safe APPLY for one action (e.g., DEFER_ANIM) behind allowlist.

4. Phase D: Debug Panel & export.

17) Next Steps

+ Confirm thresholds & default configs.
* Lock interfaces.
* Prepare scaffolding (1ib/reflection/*) with feature flags + tests skeletons.

	OS Self-Reflection Layer – Preliminary Design & Analysis
	1) Objectives
	2) Dependencies (from Awareness Layer)
	3) High-Level Architecture
	4) Data Model (logical)
	5) Core Components & Responsibilities
	5.1 Introspection Engine
	5.2 Behavior Evaluator
	5.3 Feedback Loop
	5.4 Reflection Memory
	5.5 Policy/Strategy Manager

	6) Data Flows
	7) Interfaces (proposed, non-binding)
	8) Algorithms (sketches)
	9) Config & Feature Flags
	10) Observability
	11) Testing Strategy
	12) Safety & Rollback
	13) Performance Budget
	14) Security & Privacy
	15) Open Questions
	16) Rollout Plan (Phased)
	17) Next Steps

