
OS Self-Reflection Layer – Preliminary Design &
Analysis

Pointer: OS-AWARENESS-PHASE-003
Scope: Prepare the logical design (no code) for the Self-Reflection Phase that builds on the
completed Self-Awareness Layer.

1) Objectives

Enable the OS to understand its own behavior, not just observe it.
Convert Awareness events + Telemetry + Snapshot into insights (patterns, anomalies, trends).
Establish a Self-Feedback Loop that proposes and applies policy adjustments to improve behavior/
UX/perf over time.

Key Outcomes 1. Introspection: derive signals from raw events/snapshots (e.g., window churn rate, focus
stability, render latency distribution).
2. Behavior Evaluation: measure whether recent behavior is healthy vs. target thresholds (SLO-inspired).
3. Self-Feedback: recommend/commit adjustments (e.g., throttling window spawns, deferring animations,
prefetch strategies) under feature flags.

2) Dependencies (from Awareness Layer)

Awareness Events  (e.g., DESKTOP_LOADED, WINDOW_OPENED, WINDOW_FOCUSED,
WINDOW_CLOSED, TELEMETRY_METRIC). 
Snapshot  (openWindowIds, activeWindowId, windowCount). 
Event Bus  (publish/subscribe) & Telemetry stream. 

Feature Flags: AWARENESS_ENABLED , TELEMETRY_ENABLED .

3) High-Level Architecture

┌─────────────────────────────────────────────────────────────────────┐
│                           Awareness Layer                           │
│  Events + Snapshot + Telemetry  ─────────────────────────────────▶  │
└─────────────────────────────────────────────────────────────────────┘
                              │
                              ▼
┌─────────────────────────────────────────────────────────────────────┐
│                      Self-Reflection Layer (this)                   │
│                                                                     │

• 
• 
• 

• 

• 
• 
• 

1



│  1) Introspection Engine                                            │
│     - feature extraction, window metrics, focus stability, latency  │
│                                                                     │
│  2) Behavior Evaluator                                              │
│     - compare vs. targets/SLOs, detect drifts/anomalies             │
│                                                                     │
│  3) Feedback Loop                                                   │
│     - propose → validate → (optionally) apply policy adjustments    │
│                                                                     │
│  4) Reflection Memory                                               │
│     - rolling store of summaries, decisions, and outcomes           │
│                                                                     │
│  5) Policy/Strategy Manager                                         │
│     - versioned strategies, gating via feature flags                │
└─────────────────────────────────────────────────────────────────────┘
                              │         ▲
                              │         │  outcomes & counters
                              ▼         │
┌─────────────────────────────────────────────────────────────────────┐
│                     Application / UI Policies                        │
│    (windowing rules, perf budgets, prefetch heuristics, logging)     │
└─────────────────────────────────────────────────────────────────────┘

4) Data Model (logical)

4.1 Event Envelope

AwarenessEvent {

type: 'DESKTOP_LOADED' | 'WINDOW_OPENED' | 'WINDOW_FOCUSED' | 'WINDOW_CLOSED'

| 'TELEMETRY_METRIC';

ts: number; // high-res timestamp

payload: Record<string, any>;

}

4.2 Reflection Signals (derived) 

IntrospectionSignal {

ts: number;

kind: 'WINDOW_CHURN' | 'FOCUS_STABILITY' | 'LATENCY_SUMMARY' | 'IDLE_RATIO' |

'WINDOW_LIFETIME';

value: number | Record<string, number>;

2



windowId?: string;

}

4.3 Evaluation Result

EvaluationResult {

ts: number;

signal: string; // reference to IntrospectionSignal.kind

status: 'OK' | 'WARN' | 'CRIT';

score: number; // normalized 0..1 (1=excellent)

details?: Record<string, any>;

}

4.4 Feedback Decision

FeedbackDecision {

ts: number;

cause: EvaluationResult[]; // subset that triggered decision

action: 'ADJUST_PREFETCH' | 'THROTTLE_WINDOWS' | 'DEFER_ANIM' |

'TUNE_FOCUS_TIMEOUT' | 'NOOP';

params?: Record<string, any>;

mode: 'PROPOSED' | 'DRY_RUN' | 'APPLIED';

}

4.5 Reflection Memory - Ring-buffer / sliding window (e.g., last N minutes or M entries) for:
signals[] , evaluations[] , decisions[] , plus versioned policy snapshots.

5) Core Components & Responsibilities

5.1 Introspection Engine

Purpose: Convert raw events/telemetry into normalized signals.
Techniques: rolling aggregates, EWMA, histograms, quantiles (p50/p95), streak counters.
Examples:
Window Churn: open/close per minute; high churn → cognitive load.
Focus Stability: mean time between focus changes; low means distraction.
Latency Summary: p95 of desktop_render_ms ; breaching budget → perf issue.
Idle Ratio: fraction of time without focus or interactions.

5.2 Behavior Evaluator

Compare signals vs targets (SLO-like):

• 
• 
• 
• 
• 
• 
• 

• 

3



WINDOW_CHURN <= 6/min , FOCUS_STABILITY >= 12s , LATENCY_P95 <= 2500ms , 
IDLE_RATIO <= 0.35 .

Classification: OK/WARN/CRIT  with a normalized score.
Anomaly detection (optional): z-score or robust MAD over rolling windows.

5.3 Feedback Loop

Pipeline: propose → validate → apply.
Constraints: feature flags, cooldowns, safety checks, and revert plan.
Actions (examples):
THROTTLE_WINDOWS: limit concurrent window spawns if churn is CRIT.
DEFER_ANIM: switch to reduced-motion when latency CRIT for 3 cycles.
ADJUST_PREFETCH: lower prefetch concurrency under load.
TUNE_FOCUS_TIMEOUT: increase focus stickiness to reduce thrash.

5.4 Reflection Memory

Stores: signals, evaluations, decisions, policy deltas, outcomes.
Exposes: query(range) , summaries() , export()  for debugging.

5.5 Policy/Strategy Manager

Versioned strategies with criteria → action mappings.
Supports DRY_RUN mode for safe experimentation.

6) Data Flows

6.1 Event → Signal

AwarenessEvent ──▶ Introspection Engine ──▶ IntrospectionSignal[]

- Transformations: filtering, bucketing, rolling stats.

6.2 Signal → Evaluation

IntrospectionSignal ──▶ Behavior Evaluator ──▶ EvaluationResult

- Rules + thresholds + anomaly checks.

6.3 Evaluation → Decision

EvaluationResult(+context) ──▶ Feedback Loop ──▶ FeedbackDecision

• 

• 
• 

• 
• 
• 
• 
• 
• 
• 

• 
• 

• 
• 

4



- State-aware; respects cooldowns & feature flags.

6.4 Decision → Policy

FeedbackDecision ──(if APPLIED)──▶ Policy/Strategy Manager ──▶ App/UI

- Emits PolicyChange event for observability & rollback metadata.

7) Interfaces (proposed, non-binding)

// Entrypoint

export interface SelfReflection {

start(): void; // attach to bus, begin cycles

stop(): void; // detach & flush

snapshot(): ReflectionSnapshot; // signals/evals/decisions recent view

}

export interface Introspection {

ingest(e: AwarenessEvent): void;

compute(now: number): IntrospectionSignal[];

}

export interface Evaluator {

assess(signals: IntrospectionSignal[], now: number): EvaluationResult[];

}

export interface Feedback {

decide(evals: EvaluationResult[], now: number): FeedbackDecision[];

apply(decisions: FeedbackDecision[], mode: 'DRY_RUN' | 'APPLY'): void;

}

export interface PolicyManager {

current(): PolicySnapshot;

apply(decision: FeedbackDecision): PolicySnapshot; // version++

revert(version: number): PolicySnapshot;

}

5



8) Algorithms (sketches)

8.1 Rolling Quantiles (p95) - Maintain fixed-size buffer of last N metrics per name.
- Approximation acceptable (Greenwald–Khanna or t-digest in future).
- For v1: sort small buffer (N≤256) → quick p95.

8.2 EWMA for Stability - ewma = α * x + (1-α) * ewma_prev  (α ~ 0.25).
- Use for focus change intervals to smooth noise.

8.3 Anomaly via Robust Z - z = (x - median) / (1.4826 * MAD)  → flag if |z|>3 over K windows.

8.4  Cooldown Control -  Per  action,  maintain  lastAppliedAt ;  block  if  now - lastAppliedAt <  
COOLDOWN_MS  (e.g., 30s).

9) Config & Feature Flags

REFLECTION_ENABLED  (master gate). 
REFLECTION_DRY_RUN  (no-op apply, only log). 
REFLECTION_WINDOW_SECS  (aggregation window, default 60s). 
REFLECTION_TARGETS  ( JSON thresholds). 
REFLECTION_ACTIONS  (allowlist of actions that may apply).

10) Observability

Emit REFLECTION_SIGNAL , REFLECTION_EVAL , REFLECTION_DECISION , POLICY_CHANGED . 
Counters & histograms exposed via Telemetry exporter. 
Add a Debug Panel (later) to visualize signals/evals/decisions over time.

11) Testing Strategy

Unit: each transformer (events→signals), evaluator rules, cooldown logic. 
Integration: synthetic journeys that trigger each decision type. 
Property-based (optional): random event streams to test invariants (e.g., no decision without cause).
Determinism: seed time & inputs; provide reset()  utilities similar to Awareness layer.

Coverage Targets
- Statements ≥ 60%, Branches ≥ 50%, Functions ≥ 55%, Lines ≥ 60% (≥ Awareness baseline).

• 
• 
• 
• 
• 

• 
• 
• 

• 
• 
• 
• 

6



12) Safety & Rollback

All actions gated by flags + allowlist + cooldowns. 
PolicyManager.revert(version)  available. 
DRY_RUN  default for first rollout; logs include before/after snapshots.

13) Performance Budget

Reflection cycle ≤ 3ms per second on average (main-thread). 
Bounded memory for buffers (configurable caps). 
Coalesce events (debounce) when rate is high.

14) Security & Privacy

No PII processed. 
Telemetry redaction for window titles or sensitive payload keys. 
Only numeric/aggregate metrics stored in Reflection Memory by default.

15) Open Questions

Do we need persistent storage for Reflection Memory (e.g., IndexedDB) or keep in-memory ring
buffer only? 
Should decisions be suggestive to the user (UI prompt) before apply? 
How do we expose developer hooks for custom strategies (plugin-like)?

16) Rollout Plan (Phased)

Phase A: Introspection signals (WINDOW_CHURN, FOCUS_STABILITY, LATENCY_SUMMARY). 
Phase B: Evaluator thresholds + DRY_RUN decisions with telemetry only. 
Phase C: Safe APPLY for one action (e.g., DEFER_ANIM ) behind allowlist. 
Phase D: Debug Panel & export.

17) Next Steps

Confirm thresholds & default configs. 
Lock interfaces. 
Prepare scaffolding ( lib/reflection/* ) with feature flags + tests skeletons.

• 
• 
• 

• 
• 
• 

• 
• 
• 

1. 

2. 
3. 

1. 
2. 
3. 
4. 

• 
• 
• 

7


	OS Self-Reflection Layer – Preliminary Design & Analysis
	1) Objectives
	2) Dependencies (from Awareness Layer)
	3) High-Level Architecture
	4) Data Model (logical)
	5) Core Components & Responsibilities
	5.1 Introspection Engine
	5.2 Behavior Evaluator
	5.3 Feedback Loop
	5.4 Reflection Memory
	5.5 Policy/Strategy Manager

	6) Data Flows
	7) Interfaces (proposed, non-binding)
	8) Algorithms (sketches)
	9) Config & Feature Flags
	10) Observability
	11) Testing Strategy
	12) Safety & Rollback
	13) Performance Budget
	14) Security & Privacy
	15) Open Questions
	16) Rollout Plan (Phased)
	17) Next Steps


